Applications and Techniques for Fast Machine Learning in Science
Jan 1, 2022·
,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,·
1 min read
Allison Mccarn Deiana
Nhan Tran
Joshua Agar
Michaela Blott
Giuseppe Di Guglielmo
Javier Duarte
Philip Harris
Scott Hauck
Mia Liu
Mark Neubauer
Jennifer Ngadiuba
Seda Ogrenci Memik
Maurizio Pierini
Thea Aarrestad
Steffen Bahr
Jurgen Becker
Anne Sophie Berthold
Richard J. Bonventre
Tomas E. Muller Bravo
Markus Diefenthaler
Zhen Dong
Nick Fritzsche
Amir Gholami
Ekaterina Govorkova
Dongning Guo
Kyle J. Hazelwood
Christian Herwig
Babar Khan
Sehoon Kim
Thomas Klijnsma
Yaling Liu
Kin Ho Lo
Tri Nguyen
Gianantonio Pezzullo
Seyedramin Rasoulinezhad
Ryan A. Rivera
Kate Scholberg
Justin Selig
Sougata Sen
Dmitri Strukov
William Tang
Savannah Thais
Kai Lukas Unger
Ricardo Vilalta
Belinavon Krosigk
Belina Von Krosigk
Shen Wang
Thomas K. Warburton
Maria Acosta Flechas
Anthony Aportela
Thomas Calvet
Leonardo Cristella
Daniel Diaz
Caterina Doglioni
Maria Domenica Galati
Elham E. Khoda
Farah Fahim
Davide Giri
Benjamin Hawks
Duc Hoang
Burt Holzman
Shih Chieh Hsu
Sergo Jindariani
Iris Johnson
Raghav Kansal
Ryan Kastner
Erik Katsavounidis
Jeffrey Krupa
Pan Li
Sandeep Madireddy
Ethan Marx
Patrick Mccormack
Andres Meza
Jovan Mitrevski
Mohammed Attia Mohammed
Farouk Mokhtar
Eric Moreno
Srishti Nagu
Rohin Narayan
Noah Palladino
Zhiqiang Que
Sang Eon Park
Subramanian Ramamoorthy
Dylan Rankin
Simon Rothman
Ashish Sharma
Sioni Summers
Pietro Vischia
Jean Roch Vlimant
Olivia Weng

Abstract
In this community review report, we discuss applications and techniques for fast machine learning (ML) in science—the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.
Type
Publication
Front. Big Data
Add the full text or supplementary notes for the publication here using Markdown formatting.
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors

Authors
University of Illinois at Urbana-Champaign
I am a professor at the University of Illinois. My research is highly interdisciplinary at the intersection of particle physics, AI/ML, and quantum, aiming to understand the universe at its fundamental level and to accelerate scientific discovery through innovation.
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors
Authors